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Query Processing
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Outline
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 Main phases of Query Processing

 Expressions in relational algebra

 Operators (revisited)

 Expressions

 Equivalence of expressions

 Estimating the cost of a query

 Algorithms for processing the relational operators

 Oracle DBMS: execution plans, statistics, query hints



 Compiling the query 

 Syntactic analysis

 Parsing

 Parsing tree

 Semantic analysis

 Preprocessing and rewriting in RA

 Selection of the relational algebraic 

representation

 Logical plan

 Selection of the algorithms

 Physical plan

 Executing the physical plan

Steps in Query Processing
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Query 

compilation
Parsing

Preprocesing

Generating the logical plan

Generating the physical plan

Query execution

Query 

optimization

metadata



I. Syntactic analysis

4

 Context-free grammar

<query> ::=  <SFW> | (<query>)

<SFW> ::= SELECT <select_list> FROM <table_list> WHERE <where_cond>

<select_list> ::= <identifier>, <select_list> | <identifier> 

<table_list> ::= <identifier>, <table_list> | <identifier > 

…

 Parsing result:  parsing tree

 Example of SQL grammar in BNF: http://savage.net.au/SQL/index.html

http://savage.net.au/SQL/index.html


II. Semantic analysis

a. Preprocessing
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 Rewrite calls to views

 Verify existence of relations

 Verify existence of attributes and ambiguity

 Verify data types

If the parsing tree is valid, it is transformed into an expression in Relational Algebra (RA)



II. Semantic analysis 

b. Rewriting in RA
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<Query>

<SFW>

SELECT < select_list >    FROM    < table_list >     WHERE     < where_cond >

< identifier >              < identifier >                 <Tuple>  IN  <Query>

title                       StarsIn < identifier >      (  <Query>  )

starName       <SFW>

SELECT      < select_list >    FROM     < table_list >     WHERE     < where_cond >

< identifier >           < identifier >         < identifier >  LIKE  <Pattern>

name                 MovieStar              birthDate            ‘%1960’



II. Semantic analysis 

b. Rewriting in RA (continued)
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title

 <where_cond>

<tuple>      IN   name

<attribute>      birthdate LIKE ‘%1960’

starName             MovieStar

title

starName=name

StarsIn name             

birthdate LIKE ‘%1960’

MovieStar


StarsIn



SELECT Theater

FROM Movie, Schedule

WHERE 

Movie.Title = Schedule.Title

AND Movie.Actor=“Winger”

p



Movie Schedule

Movie.Title=Schedule.Title AND Movie.Actor=“Winger”

Theater

The generator of logical plans

applies equivalence rules in RA

p



x
Movie.Title=Schedule.Title

Theater

Parsing +

Conversion


Movie.Actor=“Winger”

p

Movie Schedule

Theater

Movie.Actor=“Winger”

Movie.Title=Schedule.Title The generator 

of 

logical plans
JOIN

Movie Schedule

x

1. Initial logical plan

2. An equivalent logical plan

II. Semantic analysis 

c. Logical plan - optimization
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3. Another equivalent 

logical plan



II. Semantic analysis 

c. Logical plan – optimization (continued)
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Theater

Schedule.Title=Movie.Title


Actor=“Winger”

The generator 

of 

logical plans

Movie Schedule

Theater


Movie.Actor=“Winger”

Movie.Title=Schedule.Title

MovieSchedule



S
R



R S

cond if cond

references

only S

p
p 4. The optimal equivalent 

logical plan

Equivalence rule

applied:



II. Semantic analysis 

d. Physical plan - optimization
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The generator of  physical plans

chooses the routines 

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

Indexed nested-loop

Physical plan 1

indexes on Actor and

Title in Movie, tables not

sorted

INDEX

MovieSchedule

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

MovieSchedule

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

SORT->MERGE

index on Actor, table 

Schedule is sorted on Title,

INDEX

Generator

of

physical plans

MovieSchedule

Physical plan 2



Operators in relational algebra

(revisited)
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 Six basic operators:

 Selection: 

 Projection:  

 Union:  

 Set difference: –

 Cartesian product: x

 Renaming: 

 The operators act on one or two relations and generate one new relation



Selection
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 r

 A=B ^ D > 5 (r)

A B C D

















1

5

12

23

7

7

3

10

A B C D









1

23

7

10



Projection
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 r

 A,C (r)

A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

A C







1

1

2



Union
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 r, s

 r  s:

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3



Set difference
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 r, s

 r-s

A B







1

2

1

A B





2

3

r

s

A B





1

1



Cartesian product
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 r, s

 r x s

A B





1

2

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D









10

10

20

10

E

a

a

b

br

s



Renaming

17

  x (E) - returns the result of expression E named as X

 If the result of expression E has n attributes than

returns the result of E named as X with attributes renamed as A1 , A2 , …., An .

)(
),...,,( 21

E
nAAAx





Operators composition
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 A=C(r x s)

1. r x s

2. A=C(r x s)

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

A B C D E







1

2

2







10

10

20

a

a

b



Expressions in relational algebra

-a recursive definition
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 The simplest expression is a relation r

 Let E1 and E2 be expressions in RA;

then, the following are also expressions in RA:

 E1  E2

 E1 – E2

 E1 x E2

 p (E1), P is a predicate over attributes in E1

 s(E1), S is a list of attributes in E1

  x (E1), x is a new name for E1



Expressing queries in RA
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 Loans greater than1200

 Loan number for loans greater than 1200

 Name of the clients with a loan, a deposit or both

amount > 1200 (loan)

loan_number (amount > 1200 (loan))

customer_name (borrower)  customer_name (depositor)



Expressing queries in RA (ctd.)
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 Name for the clients having loans at the Perryridge branch

customer_name (branch_name = “Perryridge” (

borrower.loan_number = loan.loan_number (borrower x loan)))

customer_name(loan.loan_number = borrower.loan_number (

(branch_name = “Perryridge” (loan)) x  borrower))



Expressing queries in RA (ctd.)
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 Name for the clients having loans at the Perryridge branch but having no deposits

customer_name (branch_name = “Perryridge” (borrower.loan_number = loan.loan_number(borrower x loan)))  

– customer_name(depositor)



Additional relational operators
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 Set intersection

 Natural join

 Aggregation

 External join

 Theta-join

 All of them, excepting aggregation,  can be expressed using basic operators



Set intersection
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 r, s

 r  s

A       B







1

2

1

A       B




2

3

r s

A       B

 2



 r, s

 r   s

 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x  s))

Natural join
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A B











1

2

4

1

2

C D











a

a

b

a

b

B

1

3

1

2

3

D

a

a

a

b

b

E











r

A B











1

1

1

1

2

C D











a

a

a

a

b

E











s



Aggregation
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 Functions:

 avg

 min

 max

 sum

 count

 var

 Syntax:

 E – expresion in RA

 G1, G2 …, Gn a list of grouping attributes (may be empty)

 Every Fi is an aggregation function

 Every Ai is an attribute

1 2 1 1 2 2, , , ( ), ( ), , ( ) ( )
n n nG G G F A F A F A E



 r

 g sum(c) (r)

 Which aggregation functions may be  expressed based on basic relational operators?

Aggregation

Example

27

A B

















C

7

7

3

10

sum(c )

27



Aggregation

Example using basic operators

28

 The largest balance in the account table

balance(account) - account.balance (account.balance < d.balance (account x d (account)))



External join
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loan borrower

 loan      borrower (natural join)

 loan          borrower (left external join)

customer_name loan_number

Jones

Smith

Hayes

L-170

L-230

L-155

3000

4000

1700

loan_number amount

L-170

L-230

L-260

branch_name

Downtown

Redwood

Perryridge

loan_number amount

L-170

L-230

3000

4000

customer_name

Jones

Smith

branch_name

Downtown

Redwood

Jones

Smith

null

loan_number amount

L-170

L-230

L-260

3000

4000

1700

customer_namebranch_name

Downtown

Redwood

Perryridge



External join 

30

loan_number amount

L-170

L-230

L-155

3000

4000

null

customer_name

Jones

Smith

Hayes

branch_name

Downtown

Redwood

null

loan_number amount

L-170

L-230

L-260

L-155

3000

4000

1700

null

customer_name

Jones

Smith

null

Hayes

branch_name

Downtown

Redwood

Perryridge

null

➢ full external join

loan        borrower

➢ right external join

loan         borrower



Expressing queries in RA

more examples
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 Name for the clients having both a loan and a deposit

 Name for the clients having a loan and the amount

 Clients having deposits at at least the two branches named Downtown and Uptown

customer_name (borrower)  customer_name (depositor)

customer_name, lmount (borrower     loan)

customer_name (branch_name = “Downtown” (depositor account )) 

customer_name (branch_name = “Uptown” (depositor account))



Equivalence of expressions

Definition
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 Two expresions in RA are equivalent if they generate the same set of tuples on any instance of the 

database 

 Remember: the order of tuples is not relevant

 Obs: SQL works with multisets



a. (E1 X E2) =  E1  E2

b. 1(E1 2 E2) =  E1 1 2 E2

Equivalence Rules
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1. selection based on conjunctions is equivalent with a sequence of selections

2. selections are comutative

3. in a sequence of projections only the last one is necessary

4. selections may be combined with the cartesian product

))(()(
2121

EE   =

))(())((
1221

EE   =

)())))((((
121

EE LLnLL = 



5. theta-join and natural join are commutative

E1     E2 = E2    E1

6. natural joins are associative

(E1      E2)    E3 = E1      (E2 E3)

b) theta-joins are associative with some restrictions

(E1    1  E2)    2 3 E3 = E1     1 3 (E2 2 E3)

where 2 involves only attributes in E2 and E3

Equivalence Rules

34



Equivalence Rules

- visualization

35



Equivalence Rules
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7. selection may be distributed over theta-join

a) when 0 involves only attributes in (E1) :

0(E1  E2) = (0(E1))     E2

b) When  involves only attributes in E1 and 2 involves only attributes in E2:

1 (E1  E2) =  (1(E1))     ( (E2))



Equivalence Rules
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8. projection may be distributed over theta-join

a) If  involves only attributes in L1  L2:

b) Consider the join E1       E2

Let L1 and L2 be sets of attributes in E1 and E2, respectively

Let L3 contain attributes in E1 involved in , but not in L1  L2,

Let L4 contain attributes in E2 involved in , but not in L1  L2

)))(())((()( 2121 42312121
EEEE LLLLLLLL 

=


))(())(()( 2121 2121
EEEE LLLL

=  



Equivalence Rules
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9. set union and intersection are commutative

E1  E2 = E2  E1

E1  E2 = E2  E1

10. set union and intersection are associative

(E1  E2)  E3 = E1  (E2  E3)

(E1  E2)  E3 = E1  (E2  E3)

11. selection may be distributed over ,  and –. 

 (E1 – E2) =  (E1) – (E2)

similar for  and  instead of  –

 (E1 – E2) = (E1) – E2

similar for  instead of  –, but not for 

12. projection may be distributed over union

L(E1  E2) = (L(E1))  (L(E2)) 
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Logical plan optimization



Optimization

Pushing selection
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 Example 1:

 Name of the clients having an account at the branches located in Brooklyn

customer_name(branch_city = “Brooklyn”(branch     (account      depositor)))

 Based on rule 7a obtain:

customer_name ((branch_city =“Brooklyn” (branch)) (account depositor))

 By performing selection earlier, the size of the relations at join becomes smaller



Optimization

Pushing selection
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 Example 2:

 Name of the clients having an account at the branches located in Brooklyn having the balance greater than1000

customer_name(branch_city = “Brooklyn”  balance > 1000 (branch     (account      depositor)))

 Based on rule 6a (join associativity):

customer_name((branch_city = “Brooklyn”  balance > 1000 (branch     account))      depositor)

 Now we can perform the selection earlier:

branch_city = “Brooklyn” (branch)      balance > 1000 (account)



Optimization

Pushing selection (example 2 illustrated)

42



Optimization

Pushing projection
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 Example

 Eliminate the attributes no longer needed:

customer_name ((account_number (branch_city = “Brooklyn” (branch)     account )    depositor )

 By performing projection in advance, the size of the relations at join becomes smaller

customer_name((branch_city = “Brooklyn” (branch)     account)     depositor)



Optimization

Ordering at join
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 According to rule 6:

(r1 r2)    r3  = r1 (r2 r3 )

 If r2 r3 is larger than r1 r2, than choose

(r1 r2)   r3 

 Example

customer_name ((branch_city = “Brooklyn” (branch))     (account     depositor))

Only a small number of clients have accounts at Brooklyn branch, therefore is more advantageous to execute first

branch_city = “Brooklyn” (branch)    account

 For n relations there exist (2(n – 1))!/(n – 1)! different orderings for join.

 n = 7 -> 665280, n = 10 ->176 bilions!

To reduce the number of orderings under consideration, dynamic programming may be used



Cost estimation for logical plans
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 lr:  dimension of a tuple in r (in bytes).

 nr:  number of tuples in r.

 br:  number of blocks used to store r.

 fr:  number of tuples in r that can be stored in a block

 If the tuples of r are stored in a single file (contiguous blocks on hard disk):

 V(A, r): number of distincst values of attribute A in r; equivalent to the dimension of A(r) (on sets and not 
multi-sets).

 The logical plan generator estimates the number of tuples/blocks which result from each relational 
operator in the logical plan; these estimates are further used by the physical plan generator

















=
rf
rn

rb



Estimarea dimensiunii selecţiei
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 A=v(r)

 nr / V(A,r) : numărul de înregistrări ce satisfac selecţia

 pentru atribut cheie: 1

 AV(r) (cazul A  V(r) este simetric)

 dacă sunt disponibile min(A,r) şi max (A,r)

 0 dacă v < min(A,r)

 altfel

 dacă sunt disponibile histograme se poate rafina estimarea anterioară

 în lipsa oricărei informaţii statistice dimensiunea se consideră a fi nr / 2.

),min(),max(

),min(
.

rArA

rAv
nr

−

−



Estimarea dimensiunii selecţiilor complexe
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 Selectivitatea unei condiţii i este probabilitatea ca un tuplu în relaţia r să satisfacă i

 dacă numărul de tuple ce satisfac i este si , selectivitatea e si /nr.

 Conjuncţia (în ipoteza independenţei)

 Disjuncţia

1 2 . . .  n (r): 

 Negaţia

(r):     nr – size((r))

1 2. . .  n (r): 1 2   . . . n
r n

r

s s s
n

n

  










−−−− )1(...)1()1(1 21

r

n

rr

r
n

s

n

s

n

s
n



Estimarea dimensiunii joinului
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 pentru produsul cartezian r x s: nr * ns tuple, fiecare tuplu ocupă sr + ss octeţi

 pentru r s

 R  S = : nr * ns

 R  S este o (super)cheie pentru R: <= ns

 R  S = {A} nu e cheie pentru R sau S:                 sau

 minimul este considerat de acurateţe mai mare

 dacă sunt disponibile histograme se calculează formulele anterioare pe fiecare celulă pentru cele două relaţii

),( sAV

nn sr 

),( rAV

nn sr 



Estimarea dimensiunii pentru alte operaţii
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 Proiecţia A(r) :  V(A,r)

 Agregarea: AgF(r) :   V(A,r)

 Operaţii pe mulţimi

 r  s :  nr + ns.

 r  s : min(nr , ns)

 r-s : nr

 Join extern

 r        s: dim(r s)  + nr

 r          s  = dim(r      s) + nr + ns

 1 (r)  2 (r) echivalent cu 1 2 (r)

 Estimatorii furnizează în general margini superioare
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Physical plan optimization



Estimating costs for physical plans
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 The cost is generally measured as the time needed to return the result

 Disk access is considered to be the most costly operation

 Number of seeks * tS (time to localize a single data block)

 Number of blocks read/written * tT (transfer time)

 CPU cost is ignored for simplicity

 The cost for transferring b data blocks which required S seeks:

b * tT + S * tS



Algorithms for selection
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 Linear search (full scan)

 cost: br * tT + tS

 if selection is over a key attribute, estimated cost: br/2 * tT + tS

 may be applied for any search condition, data file ordering, existence of indexes

 Binary search

 Applicable for equality conditions on the sort key

 The cost of finding one qualifying tuple: log2(br) * (tT + tS); 

If there exist several qualifying tuples only transfer time is added

 Index scan (suppose a B+-tree exists for the search key)

 primary index on a candidate key, equality cond.: (hi + 1) * (tT + tS)

 primary index on a none-key, equality cond.: hi * (tT + tS) + tS + tT * b

 secondary index, equality, n tuples returned: (hi + n) * (tT + tS)

 primary index, range cond.: hi * (tT + tS) + tS + tT * b

 secondary index, range cond: ?



Algorithms for complex selections
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 Conjunction:  1 2. . . n(r) 

 Use an index for I and verify the rest when bringing data into memory

 Use a multi-key index

 Intersect the set of pointers returned by searching over all the indexes

 Disjunction: 1 2 . . . n (r)

 Union of the set of identifiers returned by index searches
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 Algorithms:

 nested-loop join

 indexed nested-loop join

 merge join

 hash join

 Choosing from above implies cost estimation – requires estimates for the logical plan



Nested-loop joins
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 For a theta-join:  r  s :

for each tuple tr in r do begin

for each tuple ts in s do begin

if (tr,ts) satisfies 

add tr • ts to the result set
end

end

 Inner relation – s

 External relation – r

 Estimated cost: (nr  bs + br)*tT + (nr + br )*tS

 May be used for any join condition
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 Full file scans may be replaced by index scans if:

 we deal with an equi-join (as a special case natural join)

 there exists an index for the inner relation associated to the join attribute

 Idea:  for every tuple tr in r use the index to retrieve all the tuples in s satisfying the join condition -

equivalent to a selection on s with the join condition

 Cost: br (tT + tS) + nr  c

 c is the cost of index search

 if indexes for both relations are available, the relation with fewer tuples will be used as external within join 

 Example:

 depositor     customer, depositor external relation

 customer has a primary index of type B+-tree on the join attribute customer-name, with m=20 entries per

node

 customer: 10,000 tuples (f=25), depositors:5000 tuples (f=50)

 cost: 100 + 5000 * 5 = 25,100 blocks transferred and seeks (compare to the case of standard nested-loop join: 

2,000,100 blocks transferred and = 5100 seeks)
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 May be used only for equi-joins

 Algorithm:

1. Sort both relations based on the join attributes (luckily, they are stored ordered)

2. Merge the two relations

 Cost: 

 br + bs transferred blocks

 + the cost of sorting

 Hybrid merge join:

 one relation is sorted, while for the second a B+ -tree associated to the join attribute is used

 The sorted relation merges with the leaf level of the tree



Hash Join 
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 Applicable only for echi-join

 Algorithm:  a hash function h aplied on the join attribute is used to partition the tuples of both 

relations into data blocks that fit in the main memory:

 r1, r2,…rn

 s1,s2,…sn

 tuples in ri are compared only with tuples si
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 Conjunction of conditions: r     1  2...   n s

 Nested-loop join, verify all the conditions

 Compute a simpler join r    i s and afterwards verify the rest of conditions

 Disjunction of conditions : r  1  2 ...  n s 
 Nested-loop join, start verifying the conditions until one is satisfied

 Compute the union of individual joins  (applicable only for the set version of union)

(r      1 s)  (r     2 s)  . . .  (r     n s)



Eliminating duplicates
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 Based on sorting or hashing

 Because is costly, DBMSs eliminate tuples only when explicitly asked



Evaluating RA expressions

(executing physical plans)
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 The operators in the RA expression/tree are evaluated starting with the last level and moving up to 

the root

 Versions:

 Materialize:  (sub)expressions on lower levels are materialized as new relations (as data files stored 

on disks) and are given as entries for upper levels

 Pipelining: tuples are given as entries to the operators on the upper levels when they are generated 

 Not always possible (think of hash join over merge join) 

 Consumer based:  the upper level asks for new tuples

 Producer based: the operator on the lower level writes in buffer and the parrent takes from the buffer (when the 

buffer is full there are waiting times on the lower level)
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 Record the plan:

EXPLAIN PLAN 

[SET STATEMENT_ID = <id>] 

[INTO <table_name>]

FOR <sql_statement>; 

 Possible for any DML statement

 Visualizing the plan:

SELECT * FROM table(dbms_xplan.display);

or (not so nicely formatted)

select * from plan_table [where statement_id = <id>];

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-explain-the-explain-plan-052011-
393674.pdf
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 Table statistics 
 Number of rows

 Number of blocks

 Average row length

 Column statistics 
 Number of distinct values (NDV) in column

 Number of nulls in column

 Data distribution (histogram)

 Index statistics 
 Number of leaf blocks

 Levels

 Clustering factor

 System statistics 
 I/O performance and utilization

 CPU performance and utilization
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 Procedures in package DBMS_STATS:

 GATHER_INDEX_STATS

 Index statistics

 GATHER_TABLE_STATS

 Table, column, and index statistics

 GATHER_SCHEMA_STATS

 Statistics for all objects in a schema

 GATHER_DATABASE_STATS

 Statistics for all objects in a database

 GATHER_SYSTEM_STATS

 CPU and I/O statistics for the system

 http://docs.oracle.com/cd/B10500_01/server.920/a96533/stats.htm
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Hints

65

 When launching a query it is possible to indicate the Oracle optimizer some choices for the 

execution plan:

SELECT /*+ USE_MERGE(employees departments) */ * FROM employees, departments WHERE employees.department_id = 

departments.department_id;

http://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements006.htm
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