
Mihaela Elena Breabăn

© FII 2021-2022

Query Processing

DATABASES

Outline

2

 Main phases of Query Processing

 Expressions in relational algebra

 Operators (revisited)

 Expressions

 Equivalence of expressions

 Estimating the cost of a query

 Algorithms for processing the relational operators

 Oracle DBMS: execution plans, statistics, query hints

 Compiling the query

 Syntactic analysis

 Parsing

 Parsing tree

 Semantic analysis

 Preprocessing and rewriting in RA

 Selection of the relational algebraic

representation

 Logical plan

 Selection of the algorithms

 Physical plan

 Executing the physical plan

Steps in Query Processing

3

Query

compilation
Parsing

Preprocesing

Generating the logical plan

Generating the physical plan

Query execution

Query

optimization

metadata

I. Syntactic analysis

4

 Context-free grammar

<query> ::= <SFW> | (<query>)

<SFW> ::= SELECT <select_list> FROM <table_list> WHERE <where_cond>

<select_list> ::= <identifier>, <select_list> | <identifier>

<table_list> ::= <identifier>, <table_list> | <identifier >

…

 Parsing result: parsing tree

 Example of SQL grammar in BNF: http://savage.net.au/SQL/index.html

http://savage.net.au/SQL/index.html

II. Semantic analysis

a. Preprocessing

5

 Rewrite calls to views

 Verify existence of relations

 Verify existence of attributes and ambiguity

 Verify data types

If the parsing tree is valid, it is transformed into an expression in Relational Algebra (RA)

II. Semantic analysis

b. Rewriting in RA

6

<Query>

<SFW>

SELECT < select_list > FROM < table_list > WHERE < where_cond >

< identifier > < identifier > <Tuple> IN <Query>

title StarsIn < identifier > (<Query>)

starName <SFW>

SELECT < select_list > FROM < table_list > WHERE < where_cond >

< identifier > < identifier > < identifier > LIKE <Pattern>

name MovieStar birthDate ‘%1960’

II. Semantic analysis

b. Rewriting in RA (continued)

7

title

 <where_cond>

<tuple> IN name

<attribute> birthdate LIKE ‘%1960’

starName MovieStar

title

starName=name

StarsIn name

birthdate LIKE ‘%1960’

MovieStar


StarsIn

SELECT Theater

FROM Movie, Schedule

WHERE

Movie.Title = Schedule.Title

AND Movie.Actor=“Winger”

p



Movie Schedule

Movie.Title=Schedule.Title AND Movie.Actor=“Winger”

Theater

The generator of logical plans

applies equivalence rules in RA

p



x
Movie.Title=Schedule.Title

Theater

Parsing +

Conversion


Movie.Actor=“Winger”

p

Movie Schedule

Theater

Movie.Actor=“Winger”

Movie.Title=Schedule.Title The generator

of

logical plans
JOIN

Movie Schedule

x

1. Initial logical plan

2. An equivalent logical plan

II. Semantic analysis

c. Logical plan - optimization

8

3. Another equivalent

logical plan

II. Semantic analysis

c. Logical plan – optimization (continued)

9

Theater

Schedule.Title=Movie.Title


Actor=“Winger”

The generator

of

logical plans

Movie Schedule

Theater


Movie.Actor=“Winger”

Movie.Title=Schedule.Title

MovieSchedule



S
R



R S

cond if cond

references

only S

p
p 4. The optimal equivalent

logical plan

Equivalence rule

applied:

II. Semantic analysis

d. Physical plan - optimization

10

The generator of physical plans

chooses the routines

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

Indexed nested-loop

Physical plan 1

indexes on Actor and

Title in Movie, tables not

sorted

INDEX

MovieSchedule

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

MovieSchedule

pTheater

Schedule.Title=Movie.Title


Actor=“Winger”

SORT->MERGE

index on Actor, table

Schedule is sorted on Title,

INDEX

Generator

of

physical plans

MovieSchedule

Physical plan 2

Operators in relational algebra

(revisited)

11

 Six basic operators:

 Selection: 

 Projection: 

 Union: 

 Set difference: –

 Cartesian product: x

 Renaming: 

 The operators act on one or two relations and generate one new relation

Selection

12

 r

 A=B ^ D > 5 (r)

A B C D

















1

5

12

23

7

7

3

10

A B C D









1

23

7

10

Projection

13

 r

 A,C (r)

A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

A C







1

1

2

Union

14

 r, s

 r  s:

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3

Set difference

15

 r, s

 r-s

A B







1

2

1

A B





2

3

r

s

A B





1

1

Cartesian product

16

 r, s

 r x s

A B





1

2

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D









10

10

20

10

E

a

a

b

br

s

Renaming

17

  x (E) - returns the result of expression E named as X

 If the result of expression E has n attributes than

returns the result of E named as X with attributes renamed as A1 , A2 , …., An .

)(
),...,,(21

E
nAAAx



Operators composition

18

 A=C(r x s)

1. r x s

2. A=C(r x s)

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

A B C D E







1

2

2







10

10

20

a

a

b

Expressions in relational algebra

-a recursive definition

19

 The simplest expression is a relation r

 Let E1 and E2 be expressions in RA;

then, the following are also expressions in RA:

 E1  E2

 E1 – E2

 E1 x E2

 p (E1), P is a predicate over attributes in E1

 s(E1), S is a list of attributes in E1

  x (E1), x is a new name for E1

Expressing queries in RA

20

 Loans greater than1200

 Loan number for loans greater than 1200

 Name of the clients with a loan, a deposit or both

amount > 1200 (loan)

loan_number (amount > 1200 (loan))

customer_name (borrower)  customer_name (depositor)

Expressing queries in RA (ctd.)

21

 Name for the clients having loans at the Perryridge branch

customer_name (branch_name = “Perryridge” (

borrower.loan_number = loan.loan_number (borrower x loan)))

customer_name(loan.loan_number = borrower.loan_number (

(branch_name = “Perryridge” (loan)) x borrower))

Expressing queries in RA (ctd.)

22

 Name for the clients having loans at the Perryridge branch but having no deposits

customer_name (branch_name = “Perryridge” (borrower.loan_number = loan.loan_number(borrower x loan)))

– customer_name(depositor)

Additional relational operators

23

 Set intersection

 Natural join

 Aggregation

 External join

 Theta-join

 All of them, excepting aggregation, can be expressed using basic operators

Set intersection

24

 r, s

 r  s

A B







1

2

1

A B




2

3

r s

A B

 2

 r, s

 r s

 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

Natural join

25

A B











1

2

4

1

2

C D











a

a

b

a

b

B

1

3

1

2

3

D

a

a

a

b

b

E











r

A B











1

1

1

1

2

C D











a

a

a

a

b

E











s

Aggregation

26

 Functions:

 avg

 min

 max

 sum

 count

 var

 Syntax:

 E – expresion in RA

 G1, G2 …, Gn a list of grouping attributes (may be empty)

 Every Fi is an aggregation function

 Every Ai is an attribute

1 2 1 1 2 2, , , (), (), , () ()
n n nG G G F A F A F A E

 r

 g sum(c) (r)

 Which aggregation functions may be expressed based on basic relational operators?

Aggregation

Example

27

A B

















C

7

7

3

10

sum(c)

27

Aggregation

Example using basic operators

28

 The largest balance in the account table

balance(account) - account.balance (account.balance < d.balance (account x d (account)))

External join

29

loan borrower

 loan borrower (natural join)

 loan borrower (left external join)

customer_name loan_number

Jones

Smith

Hayes

L-170

L-230

L-155

3000

4000

1700

loan_number amount

L-170

L-230

L-260

branch_name

Downtown

Redwood

Perryridge

loan_number amount

L-170

L-230

3000

4000

customer_name

Jones

Smith

branch_name

Downtown

Redwood

Jones

Smith

null

loan_number amount

L-170

L-230

L-260

3000

4000

1700

customer_namebranch_name

Downtown

Redwood

Perryridge

External join

30

loan_number amount

L-170

L-230

L-155

3000

4000

null

customer_name

Jones

Smith

Hayes

branch_name

Downtown

Redwood

null

loan_number amount

L-170

L-230

L-260

L-155

3000

4000

1700

null

customer_name

Jones

Smith

null

Hayes

branch_name

Downtown

Redwood

Perryridge

null

➢ full external join

loan borrower

➢ right external join

loan borrower

Expressing queries in RA

more examples

31

 Name for the clients having both a loan and a deposit

 Name for the clients having a loan and the amount

 Clients having deposits at at least the two branches named Downtown and Uptown

customer_name (borrower)  customer_name (depositor)

customer_name, lmount (borrower loan)

customer_name (branch_name = “Downtown” (depositor account)) 

customer_name (branch_name = “Uptown” (depositor account))

Equivalence of expressions

Definition

32

 Two expresions in RA are equivalent if they generate the same set of tuples on any instance of the

database

 Remember: the order of tuples is not relevant

 Obs: SQL works with multisets

a. (E1 X E2) = E1  E2

b. 1(E1 2 E2) = E1 1 2 E2

Equivalence Rules

33

1. selection based on conjunctions is equivalent with a sequence of selections

2. selections are comutative

3. in a sequence of projections only the last one is necessary

4. selections may be combined with the cartesian product

))(()(
2121

EE   =

))(())((
1221

EE   =

)())))((((
121

EE LLnLL = 

5. theta-join and natural join are commutative

E1  E2 = E2  E1

6. natural joins are associative

(E1 E2) E3 = E1 (E2 E3)

b) theta-joins are associative with some restrictions

(E1 1 E2) 2 3 E3 = E1 1 3 (E2 2 E3)

where 2 involves only attributes in E2 and E3

Equivalence Rules

34

Equivalence Rules

- visualization

35

Equivalence Rules

36

7. selection may be distributed over theta-join

a) when 0 involves only attributes in (E1) :

0(E1 E2) = (0(E1))  E2

b) When  involves only attributes in E1 and 2 involves only attributes in E2:

1 (E1  E2) = (1(E1))  ( (E2))

Equivalence Rules

37

8. projection may be distributed over theta-join

a) If  involves only attributes in L1  L2:

b) Consider the join E1  E2

Let L1 and L2 be sets of attributes in E1 and E2, respectively

Let L3 contain attributes in E1 involved in , but not in L1  L2,

Let L4 contain attributes in E2 involved in , but not in L1  L2

)))(())((()(2121 42312121
EEEE LLLLLLLL 

=


))(())(()(2121 2121
EEEE LLLL

=  

Equivalence Rules

38

9. set union and intersection are commutative

E1  E2 = E2  E1

E1  E2 = E2  E1

10. set union and intersection are associative

(E1  E2)  E3 = E1  (E2  E3)

(E1  E2)  E3 = E1  (E2  E3)

11. selection may be distributed over ,  and –.

 (E1 – E2) =  (E1) – (E2)

similar for  and  instead of –

 (E1 – E2) = (E1) – E2

similar for  instead of –, but not for 

12. projection may be distributed over union

L(E1  E2) = (L(E1))  (L(E2))

39

Logical plan optimization

Optimization

Pushing selection

40

 Example 1:

 Name of the clients having an account at the branches located in Brooklyn

customer_name(branch_city = “Brooklyn”(branch (account depositor)))

 Based on rule 7a obtain:

customer_name ((branch_city =“Brooklyn” (branch)) (account depositor))

 By performing selection earlier, the size of the relations at join becomes smaller

Optimization

Pushing selection

41

 Example 2:

 Name of the clients having an account at the branches located in Brooklyn having the balance greater than1000

customer_name(branch_city = “Brooklyn”  balance > 1000 (branch (account depositor)))

 Based on rule 6a (join associativity):

customer_name((branch_city = “Brooklyn”  balance > 1000 (branch account)) depositor)

 Now we can perform the selection earlier:

branch_city = “Brooklyn” (branch)  balance > 1000 (account)

Optimization

Pushing selection (example 2 illustrated)

42

Optimization

Pushing projection

43

 Example

 Eliminate the attributes no longer needed:

customer_name ((account_number (branch_city = “Brooklyn” (branch) account) depositor)

 By performing projection in advance, the size of the relations at join becomes smaller

customer_name((branch_city = “Brooklyn” (branch) account) depositor)

Optimization

Ordering at join

44

 According to rule 6:

(r1 r2) r3 = r1 (r2 r3)

 If r2 r3 is larger than r1 r2, than choose

(r1 r2) r3

 Example

customer_name ((branch_city = “Brooklyn” (branch)) (account depositor))

Only a small number of clients have accounts at Brooklyn branch, therefore is more advantageous to execute first

branch_city = “Brooklyn” (branch) account

 For n relations there exist (2(n – 1))!/(n – 1)! different orderings for join.

 n = 7 -> 665280, n = 10 ->176 bilions!

To reduce the number of orderings under consideration, dynamic programming may be used

Cost estimation for logical plans

45

 lr: dimension of a tuple in r (in bytes).

 nr: number of tuples in r.

 br: number of blocks used to store r.

 fr: number of tuples in r that can be stored in a block

 If the tuples of r are stored in a single file (contiguous blocks on hard disk):

 V(A, r): number of distincst values of attribute A in r; equivalent to the dimension of A(r) (on sets and not
multi-sets).

 The logical plan generator estimates the number of tuples/blocks which result from each relational
operator in the logical plan; these estimates are further used by the physical plan generator

















=
rf
rn

rb

Estimarea dimensiunii selecţiei

46

 A=v(r)

 nr / V(A,r) : numărul de înregistrări ce satisfac selecţia

 pentru atribut cheie: 1

 AV(r) (cazul A  V(r) este simetric)

 dacă sunt disponibile min(A,r) şi max (A,r)

 0 dacă v < min(A,r)

 altfel

 dacă sunt disponibile histograme se poate rafina estimarea anterioară

 în lipsa oricărei informaţii statistice dimensiunea se consideră a fi nr / 2.

),min(),max(

),min(
.

rArA

rAv
nr

−

−

Estimarea dimensiunii selecţiilor complexe

47

 Selectivitatea unei condiţii i este probabilitatea ca un tuplu în relaţia r să satisfacă i

 dacă numărul de tuple ce satisfac i este si , selectivitatea e si /nr.

 Conjuncţia (în ipoteza independenţei)

 Disjuncţia

1 2 . . .  n (r):

 Negaţia

(r): nr – size((r))

1 2. . .  n (r): 1 2 . . . n
r n

r

s s s
n

n

  










−−−−)1(...)1()1(1 21

r

n

rr

r
n

s

n

s

n

s
n

Estimarea dimensiunii joinului

48

 pentru produsul cartezian r x s: nr * ns tuple, fiecare tuplu ocupă sr + ss octeţi

 pentru r s

 R  S = : nr * ns

 R  S este o (super)cheie pentru R: <= ns

 R  S = {A} nu e cheie pentru R sau S: sau

 minimul este considerat de acurateţe mai mare

 dacă sunt disponibile histograme se calculează formulele anterioare pe fiecare celulă pentru cele două relaţii

),(sAV

nn sr 

),(rAV

nn sr 

Estimarea dimensiunii pentru alte operaţii

49

 Proiecţia A(r) : V(A,r)

 Agregarea: AgF(r) : V(A,r)

 Operaţii pe mulţimi

 r  s : nr + ns.

 r  s : min(nr , ns)

 r-s : nr

 Join extern

 r s: dim(r s) + nr

 r s = dim(r s) + nr + ns

 1 (r)  2 (r) echivalent cu 1 2 (r)

 Estimatorii furnizează în general margini superioare

50

Physical plan optimization

Estimating costs for physical plans

51

 The cost is generally measured as the time needed to return the result

 Disk access is considered to be the most costly operation

 Number of seeks * tS (time to localize a single data block)

 Number of blocks read/written * tT (transfer time)

 CPU cost is ignored for simplicity

 The cost for transferring b data blocks which required S seeks:

b * tT + S * tS

Algorithms for selection

52

 Linear search (full scan)

 cost: br * tT + tS

 if selection is over a key attribute, estimated cost: br/2 * tT + tS

 may be applied for any search condition, data file ordering, existence of indexes

 Binary search

 Applicable for equality conditions on the sort key

 The cost of finding one qualifying tuple: log2(br) * (tT + tS);

If there exist several qualifying tuples only transfer time is added

 Index scan (suppose a B+-tree exists for the search key)

 primary index on a candidate key, equality cond.: (hi + 1) * (tT + tS)

 primary index on a none-key, equality cond.: hi * (tT + tS) + tS + tT * b

 secondary index, equality, n tuples returned: (hi + n) * (tT + tS)

 primary index, range cond.: hi * (tT + tS) + tS + tT * b

 secondary index, range cond: ?

Algorithms for complex selections

53

 Conjunction: 1 2. . . n(r)

 Use an index for I and verify the rest when bringing data into memory

 Use a multi-key index

 Intersect the set of pointers returned by searching over all the indexes

 Disjunction: 1 2 . . . n (r)

 Union of the set of identifiers returned by index searches

Algorithms for join

54

 Algorithms:

 nested-loop join

 indexed nested-loop join

 merge join

 hash join

 Choosing from above implies cost estimation – requires estimates for the logical plan

Nested-loop joins

55

 For a theta-join: r  s :

for each tuple tr in r do begin

for each tuple ts in s do begin

if (tr,ts) satisfies 

add tr • ts to the result set
end

end

 Inner relation – s

 External relation – r

 Estimated cost: (nr  bs + br)*tT + (nr + br)*tS

 May be used for any join condition

Indexed nested-loop join

56

 Full file scans may be replaced by index scans if:

 we deal with an equi-join (as a special case natural join)

 there exists an index for the inner relation associated to the join attribute

 Idea: for every tuple tr in r use the index to retrieve all the tuples in s satisfying the join condition -

equivalent to a selection on s with the join condition

 Cost: br (tT + tS) + nr  c

 c is the cost of index search

 if indexes for both relations are available, the relation with fewer tuples will be used as external within join

 Example:

 depositor customer, depositor external relation

 customer has a primary index of type B+-tree on the join attribute customer-name, with m=20 entries per

node

 customer: 10,000 tuples (f=25), depositors:5000 tuples (f=50)

 cost: 100 + 5000 * 5 = 25,100 blocks transferred and seeks (compare to the case of standard nested-loop join:

2,000,100 blocks transferred and = 5100 seeks)

Merge join

57

 May be used only for equi-joins

 Algorithm:

1. Sort both relations based on the join attributes (luckily, they are stored ordered)

2. Merge the two relations

 Cost:

 br + bs transferred blocks

 + the cost of sorting

 Hybrid merge join:

 one relation is sorted, while for the second a B+ -tree associated to the join attribute is used

 The sorted relation merges with the leaf level of the tree

Hash Join

58

 Applicable only for echi-join

 Algorithm: a hash function h aplied on the join attribute is used to partition the tuples of both

relations into data blocks that fit in the main memory:

 r1, r2,…rn

 s1,s2,…sn

 tuples in ri are compared only with tuples si

Complex joins

59

 Conjunction of conditions: r 1  2...   n s

 Nested-loop join, verify all the conditions

 Compute a simpler join r i s and afterwards verify the rest of conditions

 Disjunction of conditions : r 1  2 ...  n s
 Nested-loop join, start verifying the conditions until one is satisfied

 Compute the union of individual joins (applicable only for the set version of union)

(r 1 s)  (r 2 s)  . . .  (r n s)

Eliminating duplicates

60

 Based on sorting or hashing

 Because is costly, DBMSs eliminate tuples only when explicitly asked

Evaluating RA expressions

(executing physical plans)

61

 The operators in the RA expression/tree are evaluated starting with the last level and moving up to

the root

 Versions:

 Materialize: (sub)expressions on lower levels are materialized as new relations (as data files stored

on disks) and are given as entries for upper levels

 Pipelining: tuples are given as entries to the operators on the upper levels when they are generated

 Not always possible (think of hash join over merge join)

 Consumer based: the upper level asks for new tuples

 Producer based: the operator on the lower level writes in buffer and the parrent takes from the buffer (when the

buffer is full there are waiting times on the lower level)

Inspecting execution plans in Oracle

62

 Record the plan:

EXPLAIN PLAN

[SET STATEMENT_ID = <id>]

[INTO <table_name>]

FOR <sql_statement>;

 Possible for any DML statement

 Visualizing the plan:

SELECT * FROM table(dbms_xplan.display);

or (not so nicely formatted)

select * from plan_table [where statement_id = <id>];

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-explain-the-explain-plan-052011-
393674.pdf

Execution plans in Oracle

Statistics

63

 Table statistics
 Number of rows

 Number of blocks

 Average row length

 Column statistics
 Number of distinct values (NDV) in column

 Number of nulls in column

 Data distribution (histogram)

 Index statistics
 Number of leaf blocks

 Levels

 Clustering factor

 System statistics
 I/O performance and utilization

 CPU performance and utilization

Execution plans in Oracle

Collecting statistics

64

 Procedures in package DBMS_STATS:

 GATHER_INDEX_STATS

 Index statistics

 GATHER_TABLE_STATS

 Table, column, and index statistics

 GATHER_SCHEMA_STATS

 Statistics for all objects in a schema

 GATHER_DATABASE_STATS

 Statistics for all objects in a database

 GATHER_SYSTEM_STATS

 CPU and I/O statistics for the system

 http://docs.oracle.com/cd/B10500_01/server.920/a96533/stats.htm

Execution plans in Oracle

Hints

65

 When launching a query it is possible to indicate the Oracle optimizer some choices for the

execution plan:

SELECT /*+ USE_MERGE(employees departments) */ * FROM employees, departments WHERE employees.department_id =

departments.department_id;

http://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements006.htm

References

66

 Chapters13 and 14 in Avi Silberschatz Henry F. Korth S. Sudarshan. “Database System Concepts”. McGraw-

Hill Science/Engineering/Math; 4th edition

